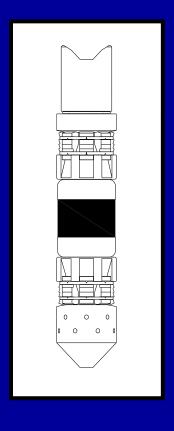
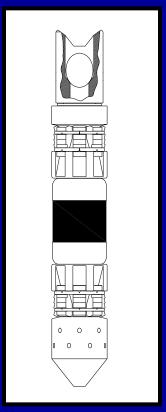

SPE Calgary Section – October 2011

Best Practices for Multizone Isolation Using Composite Plugs


Doug Lehr, Baker Hughes

Based on SPE Paper 142744


Plug N Perf – Multizone Isolation

Bridge Plugs vs. Frac Plugs

Bridge Plug

Frac Plug

A.K.A.
"Flow
Through
Plug"

Global Need

Next Challenge - International Unconventional

Argentina...Neuquen Basin...774 TCF

Australia... Beetaloo Basin...23 TCF

Eastern Europe...50 basins...700 TCF?

China, Indonesia, Russia – CBM and shale

Today's Presentation

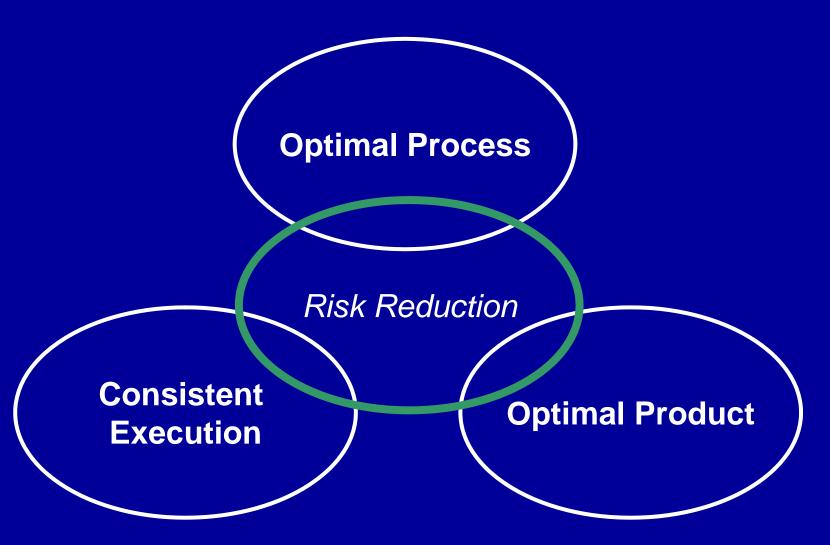
Why Determine Best Practices?

Methodology

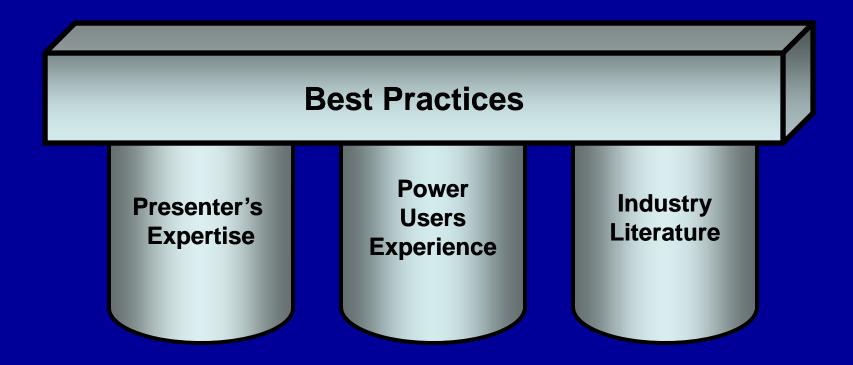
Selected Survey Results

Selected Best Practices

Q&A


Definition of Best Practice

A process or method...


Customary or routine...

The highest probability of success

Why Determine Best Practices?

Best Practices Methodology

Selected Survey Results

Table 1: Ratio of Positive-to-Negative Responses (P/N)					
0.3 or less Very Strong Disagreement					
0.4 - 0.5	Strong Disagreement				
0.6 - 0. Agree/ [Disagree greement				
0.9 - 1 = (P/N)	= Ratio nent				
1.1 - 2.0	Mild Agreement				
2.1 - 3.0	Strong Agreement				
3.1 or more	Very Strong Agreement				

Definitions & Abbreviations

CP = Composite Plug

CFP = Composite Frac Plug (Flow Through)

Perf = Perforation

Stim = Stimulation or Hydraulic Fracturing

CT = Coiled Tubing

PnP = Plug and Perf

Power Users = Respondents in Industry Survey

Selected Best Practices

Product Selection

Determining the Plug Pressure Requirement

Wellsite QA/QC

Wellbore Preparation

Perforating above the CP (Composite Plug)

Special Operational Situations

Test Your PnP (Plug and Perf) Knowledge

...Trivia Question #1

Approximately how many composite plugs were run in the United States in calendar year 2010?

Is the answer...

Product Selection Criteria

Which Golf Ball do I Choose?

Objective feedback required!

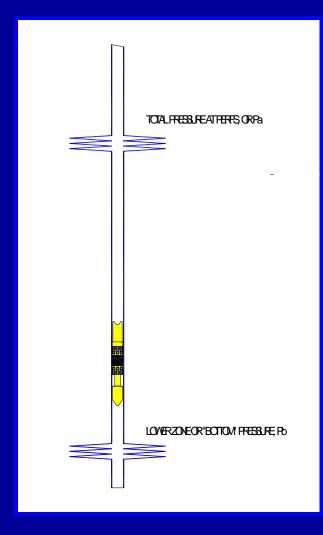
Product Selection Criteria

	Yes	No	Don't Know	P/N Ratio
Length of exposure?	9	19		0.5
Combined pressure & temperature rating?	20	8		2.5

Corrosive Environments

Elastomeric Materials < 30 days exposure

Material	Temp, o _F	Environmental Compatibility							
		H ₂ S	Oil Base/Diesel Completion	Light Brine Completion	Bromide Completion	Amine Inhibitors	Acids Max exposure time, hrs	Solvents Max exposure time, hrs	High pH Fluids, pH > 10
Nitrile	То 175	YES	YES	YES	CaBr ₂ /NaBr ₂ OK to 250°F;	YES	8	6	YES
	400				NO for ZnBr ₂		6	4	24 hrs.
Viton	То 200	YES	YES	YES	YES	YES	24	24	NO
	350					NO	4	4	
Aflas	To 175	YES	NO	YES	YES	YES	48	4	YES
	350						8	NO	
EPDM	То 500	YES	NO	YES	YES	YES	YES	NO	YES


Composites - H₂S, CO₂ & H₂O – blistering, disbonding, leaching

Best Practices - Product Selection

- >Combined pressure & temperature rating.
- > Require database of installations.
- **Corrosive Environments manufacturer** estimates CP life

CP Pressure Requirement

Negative Test	Positive Test	Stimulation	Flowback
P _{SI} = 7500 psi	P _{SI} = 7500 psi	P _{SI} = 7500 psi	P _{SI} = 7500 psi
ΔP = -9097 psi	ΔP = +4466 psi	ΔP = +3172 psi	ΔP = -7752 psi

The 4 Scenario Method

Best Practices CP Pressure Requirement

CP - calculate using 4 Scenario Method.

CFP - positive test, zonal stimulation scenarios.

Wellsite QA/QC - Survey Results

Documentation Required	Yes	No	Don't Know	P/N Ratio
Electric line setting tool servicing records?	22	5	1	4.4
Traceability - size, part number, serial number?	18	9	1	2
Plug dimensions?	23	5		4.6
Pre-run checks - plug, setting tool, CCL?	23	4	1	5.8

Wellsite QA/QC - Quick Check

Wireline setting / CCL tools – redress– Document!

CP - Document Everything!

Brand...style...rating...color

Dimensions

Traceability markings

Condition before RIH

Best Practices - Wellsite QA/QC

Consistent Execution

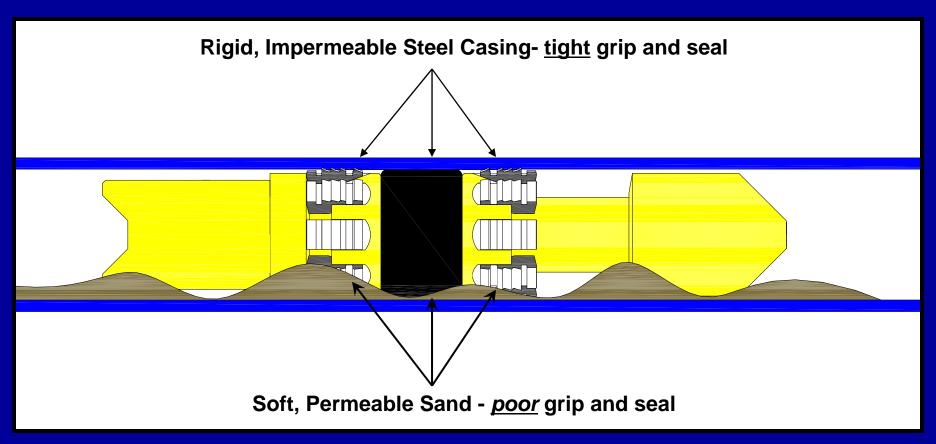
>Operators – drive this process - information & format

>Check lists – manufacturer or service company.

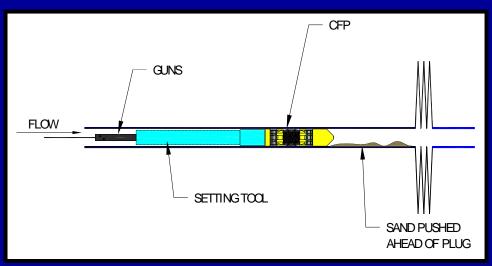
>Archive all available CP information

Test Your PnP Knowledge

...Answer to Trivia Question #1


Approximately how many composite plugs were run in the United States in calendar year 2010?

The answer is...


Wellbore Prep – Survey Results

Power Users - wellbore preparation is a success factor

Bottom line ... avoid sand in casing!

Options for Clean Wellbore

Begin with End in Mind

Avoid Flowback Between Stages

Size the flush to aid cleaning

Pump-Down Method

Intrinsic Advantage

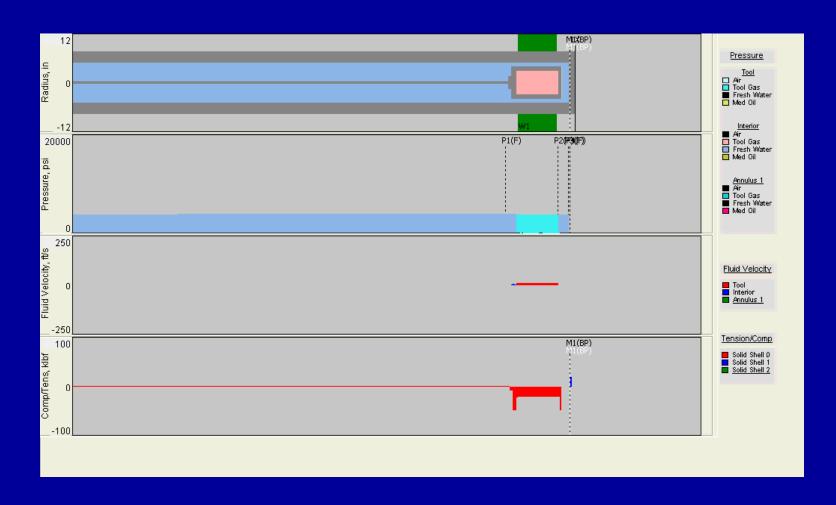
Flow pushes sand ahead of CFP

Coiled Tubing (CT)

Remove debris between stages

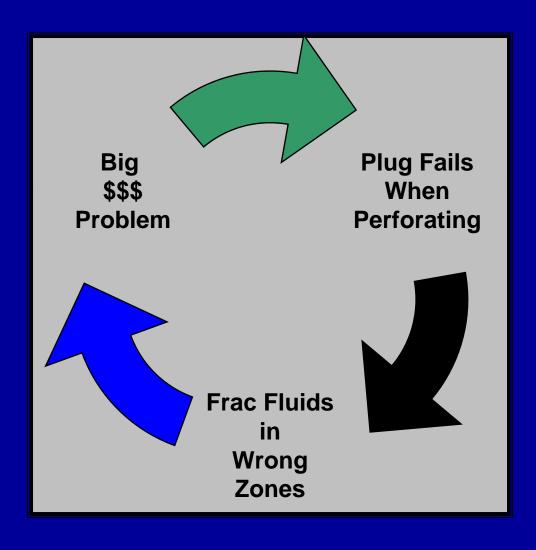
CT setting tools remove debris

Best Practices - Wellbore Preparation



- > Execute stimulation job to prevent debris
- > Avoid flowback between stimulations
- >Pump-down method intrinsic advantage
- >Coiled tubing if flowback between stages is used

Perforating Above CP – Survey


Is This a Best Practice?	Yes	No	Don't Know	P/N Ratio
Perforate at least 75 ft. above plug?	8	15	4	0.5
Perforate at least 100 ft. above plug?	9	14	4	0.6
Use Shock-wave software to determine safe perforating distance?	7	7	13	1
Use field experience and shock-wave software (S/W)?	15	4	7	3.8

Shockwave Simulation Using S/W

Sample Simulation Using 5 1/2" CP

When CP Fails During Perforating

Best Practices - Perforating Above CP

>Shock wave intensity ★ gun length, rock stiffness, etc.

>Simulate, then compare to plug rating

> Pressure wave is bigger problem for CPs.

>When possible, use software to make the decision

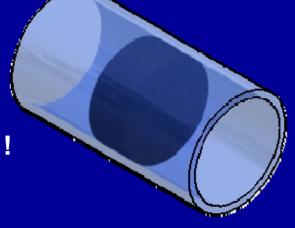
Special Operational Situations

Is This a Best Practice?	Risk	Yes	N o	Don't know	P/N Ratio
Tag plug with setting tool	Stuck setting tool	15	13		1.2
Low fluid level wells	Damage plug	20	8		2.5

Is This a Best Practice?		No	Don't Know	P/N Ratio
Set plug in perforated casing joint?	14	10	4	1.4
Set plug where packer had been removed?	14	9	5	1.6

Tagging Plug with E-Line Setting Tool

Assume $5 \frac{1}{2}$ " 20 ppf casing (ID = 4.778) & test pressure = 10,000 psi

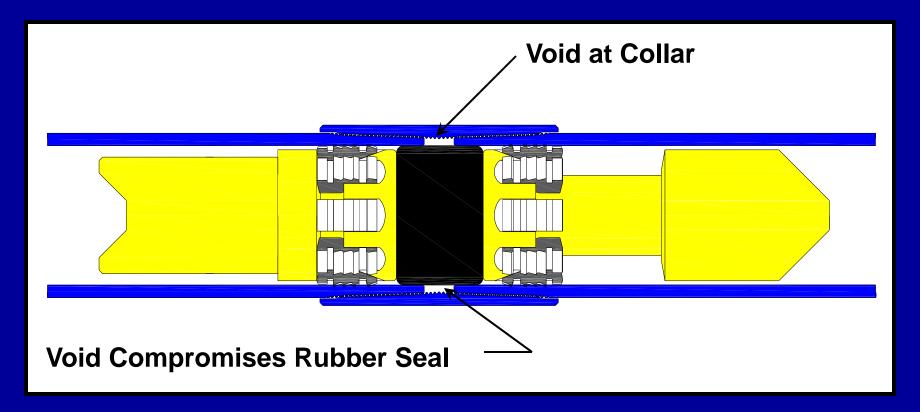

ID area of casing = 17.93 in.²

 $17.93 \text{ in.}^2 \times 10,000 \text{ psi} = 179,300 \text{ lbs.-force}$

Setting tool + CCL + perf gun = 500 lbs

Partially set plug resists with 2,000 lbs.-force!

Conclusion: 500 lbs. vs. 179,300 lbs. is NOT a valid test



Risk: Stuck E-Line tools and fishing job

Solution: Use a pressure test will confirm proper set

Casing Irregularities

Plug Set in Casing Collar, Perforated, or Drilled-In casing joint ...

Same result...Any gross discontinuity in casing compromises plug

Special Operational Situations

"Problem Casing"

>Avoid collars, perforated or drilled-in casing

⇒ Use pressure test to assess plug condition

Review Plan for Success & Minimize Risk

- 1 Pick the right product.
- 2 Avoid over-pressuring the plug.
- 3 Emphasize documentation.
- 4 Prepare the Wellbore.
- 5 Perforate for Plug Survival.
- 6 Avoid "Special Operational Situations".

End of Presentation

Thank You!

Thanks to the Management of ConocoPhillips & Baker Hughes who provided support for SPE 142744.

Questions & Answers